Low energy cooling related beam experiments

Christoph Montag

APEX Workshop 2016

Low Energy RHIC electron Cooling (LEReC)

 Luminosity at low energies (below nominal injection energy) has to be increased by at least a factor 3 for BES-II

Up to 5.75 GeV, Low Energy RHIC electron Cooling

• Above 5.75 GeV, luminosity increase has to come from higher intensity and/or smaller β^*

• APEX proposals aim at cooling diagnostics, and intensity increase/ β^* reduction

Cooling diagnostics

- 1. Beam energy (=velocity) measurements
 - Electron cooling requires overlap of electron and ion beam in transverse position and longitudinal velocity
 - Transverse positions: BPMs
 - Longitudinal velocity is most challenging

Velocity measurement/calibration idea:

- Inject and debunch ion beam
- Turn on electron cooler
- Observe longitudinal Schottky spectrum
- Spike in longitudinal Schottky spectrum indicates where electron and ion velocity are equal, resulting in cooling

APEX experiment in 2016:

Measure momentum acceptance by observing Schottky spectrum of debunched beam to determine maximum observable velocity offset (4 hours)

2. Cooling optimization

- Cooling results in electron capture by the Au⁷⁹⁺ ions (recombination)
- Detecting the resulting Au⁷⁸⁺ ions provides a "luminosity" signal for tuning
- $B\rho$ for Au⁷⁸⁺ is 1.25 percent higher, resulting in a dispersive orbit
- Detecting Au^{78+} requires a location with large dispersion and small β :

$$\frac{\Delta p}{p} \times D > 5\sigma_x = 5\sqrt{\epsilon \beta_x}$$

 Such a location does not exist in the regular RHIC lattice

Two APEX proposals:

- Dedicated "high dispersion" lattice has been developed by Felix Carlier (CERN)
- Implement and test this lattice at injection energy (6-8 hours)
- Generate small beam loss in dedicated location to test detectability outside the cryostat (4 hours, could be regular lattice as well)

Luminosity increase above 5.75 GeV

- RHIC has operated with 1.1×10^9 and $\beta^* = 3.5 \, \mathrm{m}$ at 7.3 GeV, and 0.9×10^9 and $\beta^* = 2.5 \, \mathrm{m}$ at 9.8 GeV
- This may not have been the optimum parameter set for integrated luminosity

APEX proposal:

Prepare injection energy lattices with different values of β^* , and collide beams of varying intensity. Find parameter combination for maximum integrated luminosity (16 hours)